2012年4月29日 星期日

Gut-Liver Axis and Sensing Microbes

Gut-Liver Axis and Sensing Microbes


Detoxification’ of gut-derived toxins and microbial products from gut-derived microbes is a major role of the liver. While the full repertoire of gut-derived microbial products that reach the liver in health and disease is yet to be explored, the levels of bacterial lipopolysaccharide (LPS), a component of Gram-negative bacteria, is increased in the portal and/or systemic circulation in several types of chronic liver diseases. Increased gut permeability and LPS play a role in alcoholic liver disease where alcohol impairs the gut epithelial integrity through alterations in tight junction proteins. In addition, non-alcoholic fatty liver disease is also associated with increased serum LPS levels and activation of the pro-inflammatory cascade plays a central role in disease progression. Microbial danger signals are recognized by pattern recognition receptors such as the Toll-like receptor 4 (TLR4). Increasing evidence suggests that TLR4-mediated signaling via the MyD88-dependent or MyD88-independent pathways may play different roles in liver diseases associated with increased LPS exposure of the liver as a result of gut permeability. For example, we showed that in alcoholic liver disease, the MyD88-independent, IRF3-dependent TLR4 cascade plays a role in steatosis and inflammation. Our recent data demonstrate that chronic alcohol exposure in the liver leads to sensitization of Kupffer cells to LPS via a mechanism involving upregulation of microRNA-155 in Kupffer cells. Thus, understanding the cell-specific recognition and intracellular signaling events in sensing gut-derived microbes will help to achieve an optimal balance in the gut-liver axis and ameliorate liver diseases.

The Microbes of the Intestine An Introduction to Their Metabolic and Signaling Capabilities

The Microbes of the Intestine An Introduction to Their Metabolic and Signaling Capabilities


The human gut is home to a complex community of microbes (the microbiota) that plays a critical role in host nutrient acquisition and metabolism, development of intestinal epithelial cells, and host immune system. Genetic background, nutritional status, and environmental factors influence the structure and function of the gut microbiota. Networks for cell-cell communication include microbes actively communicating with microbes of the same and other species; host cells recognizing and interacting with commensal versus pathogenic organisms; and microbes releasing peptides that resemble peptide hormones of vertebrates, possibly influencing host cell function.

Effect of Interactions of Bacteria, Viruses, and Eukaryotes in Health and Diseas

Effect of Interactions of Bacteria, Viruses, and Eukaryotes in Health and Diseas


We have only recently started to appreciate that the human body is home to far more than human cells: we harbor at least 100 trillion (1014) microbial cells and a quadrillion viruses in and on us.

Collectively, the microbial associates that reside in and on the human body constitute our microbiota, and the genes they encode is known as our microbiome. This complex community contains taxa from across the tree of life, bacteria, eukaryotes, viruses, and at least one archaeon, that interact with one another and with the host, greatly impacting human health and physiology. Only a small minority of these can be cultured, and recently, culture-independent high-throughput sequencing has greatly expanded the repertoire of known microbes both in our bodies and in the environment

Human gut microbiome: the second genome of human body

Human gut microbiome: the second genome of human body


The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a majority of them belongs to the divisions of Firmicutes and Bacteriodetes. In addition, most people share a core microbiota that comprises 50-100 bacterial species when the frequency of abundance at phylotype level is not considered, and a core microbiome harboring more than 6000 functional gene groups is present in the majority of human gut surveyed till now. Gut bacteria are not only critical for regulating gut metabolism, but also important for host immune system as revealed by animal studies.

Microbiota immune system interaction: an uneasy alliance

Microbiota immune system interaction: an uneasy alliance


An estimated 100 trillion microbes colonize human beings, with the majority of organisms residing in the intestines. This microbiota impacts host nutrition, protection, and gut development. Alterations in microbiota composition are associated with susceptibility to various infectious and inflammatory gut diseases. The mucosal surface is not a static barrier that simply prevents microbial invasion but a critical interface for microbiota-immune system interactions. Recent work suggests that dynamic interactions between microbes and the host immune system at the mucosal surface inform immune responses both locally and systemically.

Metagenomics: Key to Human Gut Microbiota

Metagenomics: Key to Human Gut Microbiota


The human gastrointestinal tract harbors the most complex human microbial ecosystem (intestinal microbiota). The comprehensive genome of these microbial populations (intestinal microbiome) is estimated to have a far greater genetic potential than the human genome itself. Correlations between changes in composition and activity of the gut microbiota and common disorders, such as inflammatory bowel diseases, obesity, diabetes, and atopic diseases, have been proposed, increasing the interest of the scientific community in this research field. In this perspective, a comprehensive and detailed view of the human gut microbiota, in terms of phylogenetic composition as well as genetic and metabolic potential, is essential to understand the dynamics and possible mechanisms of the cause/effect relationships between gut microbiota and pathology. Metagenomics has emerged as one of the most powerful sequence-driven approaches to study the composition and the genetic potential of this complex ecosystem, and efforts in this direction have been smoothed by the implementation of next generation sequencing platforms. Here, we highlight the potential of the newest high-throughput, culture-independent approaches for the characterization of the human gut microbiome in health and disease. Recent and promising results in this field are presented, underlining the perspectives and future research direction of human gut microbial ecology.



MICROBIOTA:THE FOGORTTEN ORGAN

MICROBIOTA:THE FOGORTTEN ORGAN


insight into the surprising world of gut

microbiota ‘a virtual organ within an organ’.

It is a community of living

microorganisms ‘a trillion bacteria’ assembled in a particular ecological

niche of a host individual.

Gut Microbiota and Its Pathophysiology in Disease Paradigms

Gut Microbiota and Its Pathophysiology in Disease Paradigms


The gut flora carries out important functions for human health, although most of them are still unknown, and an alteration of any of them, due to a condition of dysbiosis, can lead to relevant pathological implications. Commensal bacteria in the gut are essential for the preservation of the integrity of the mucosal barrier function and an alteration in the anatomic functional integrity of this barrier has been implicated in the pathophysiologic process of different diseases. The gut microflora plays a role in modulating the intestinal immune system; in fact, it is essential for the maturation of gut-associated lymphatic tissue, the secretion of IgA and the production of antimicrobial peptides. The enteric flora represents a potent bioreactor which controls several metabolic functions, even if most of them are still unknown. The main metabolic functions are represented by the fermentation of indigestible food substances into simple sugars, absorbable nutrients, and short-chain fatty acids. Furthermore, the gut microbiota exerts important trophic and developmental functions on the intestinal mucosa. This overview focuses briefly on the physiological role of the gut microbiota in maintaining a healthy state and the potential role played by disturbances of both the function and composition of the gut microbiota in determining important pathological conditions, such as irritable bowel syndrome, inflammatory bowel disease, metabolic syndrome, obesity, and cancer.



GUT MICROBIOTA

GUT MICROBIOTA


Taken together, the gut microbiota is a highly dynamic organ, whose cellular composition is affected not only by diet, age and immune status,but also by host physiology such as obesity

The gut microbiota as an environmental factor that regulates fat storage

The gut microbiota as an environmental factor that regulates fat storage


The human gut contains an immense number of microorganisms, collectively known as the microbiota. This community consists of at least 1013 citizens, is dominated by anaerobic bacteria, and includes ≈500-1,000 species whose collective genomes are estimated to contain 100 times more genes than our own human genome.

The microbiota can be viewed as a metabolic “organ” exquisitely tuned to our physiology that performs functions that we have not had to evolve on our own. These functions include the ability to process otherwise indigestible components of our diet, such as plant polysaccharides. Defining host signaling pathways regulated by the microbiota provides an opportunity to identify new therapeutic targets for promoting health.

Human gut microbiome: the second genome of human body

Human gut microbiome: the second genome of human body


The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a majority of them belongs to the divisions of Firmicutes and Bacteriodetes. In addition, most people share a core microbiota that comprises 50-100 bacterial species when the frequency of abundance at phylotype level is not considered, and a core microbiome harboring more than 6000 functional gene groups is present in the majority of human gut surveyed till now. Gut bacteria are not only critical for regulating gut metabolism, but also important for host immune system as revealed by animal studies.

Microbiota immune system interaction: an uneasy alliance

Microbiota immune system interaction: an uneasy alliance


An estimated 100 trillion microbes colonize human beings, with the majority of organisms residing in the intestines. This microbiota impacts host nutrition, protection, and gut development. Alterations in microbiota composition are associated with susceptibility to various infectious and inflammatory gut diseases. The mucosal surface is not a static barrier that simply prevents microbial invasion but a critical interface for microbiota-immune system interactions. Recent work suggests that dynamic interactions between microbes and the host immune system at the mucosal surface inform immune responses both locally and systemically.



Whole body systems approaches for gut microbiota targeted preventive healthcare

Whole body systems approaches for gut microbiota targeted preventive healthcare


Humans are superorganisms with two genomes that dictate phenotype, the genetically inherited human genome (19042-25,000 genes) and the environmentally acquired human microbiome (over 1 million-3.3millions genes). The two genomes must work in harmonious integration as a hologenome to maintain health. Nutrition plays a crucial role in directly modulating our microbiomes and health phenotypes. Poorly balanced diets can turn the gut microbiome from a partner for health to a “pathogen” in chronic diseases, e.g. accumulating evidence supports the new hypothesis that obesity and related metabolic diseases develop because of low-grade, systemic and chronic inflammation induced by diet-disrupted gut microbiota. Due to the tight integration of gut microbiota into human global metabolism, molecular profiling of urine metabolites can provide a new window for reflecting physiological functions of gut microbiomes. Changes of gut microbiota and urine metabolites can thus be employed as new systems approaches for quantitative assessment and monitoring of health at the whole-body level with the advantage of measuring human health based on the results of interactions between the two genomes and the environment rather than just host genomic information.

HUMAN SUPERORGANISM

HUMAN SUPERORGANISM


Human beings can be considered as “superorganisms” as a result of their close symbiotic associations with the gut microbiota. Superorganism metabolism involves integration of truly indigenous metabolic processes (coded in the host genome) with those of the microbiome. This results in extensive transgenomic cometabolism of many substrates including those involved in host metabolic regulation. The superorganism concept represents an important paradigm shift in understanding human biology and is likely to have a significant impact on the future of disease prevention and therapy. Recent works have shown that the exact human microbiome composition varies between healthy people and also between lean and obese individuals, and further, that the microbiome composition is responsive to dietary modulation for weight reduction. “Top-down”systems biology analysis of metabolic profiles of human baby microbiota and normal microbiota associated mice revealed that absorption, storage, and metabolism of dietary lipids were specifically modulated by the microbiome. Moreover, the induction of type 2 diabetes and obesity with a high-fat diet in rats has been shown to correlate with the predose metabolic patterns associated with differences in gut bacterial activities, indicating the importance of the microbiome in host predisposition to diseases. Recent work showed that gut microbiome was probably responsible in part for the systemic response to Schistosoma mansoni infection in mice. Disruptions of choline metabolism caused by changes in symbiotic gut microbiota may play an active role in the development of insulin resistance and nonalcoholic fatty liver disease in high-fat diet experiments with a mouse strain genetically predisposed to these disease traits (. Responses of individual animals and humans to drug treatments can also be strongly influenced by gut microbiome composition, because the microbiome provides not only complementary metabolic pathways for drugs, but is also a source of pharmacologically active secondary metabolites that can activate mammalian liver enzyme systems. The importance of gut microbiota to host metabolism may best be illustrated by the fact that genetically homogeneous animals can have diverse metabolic phenotypes when they have structurally different gut microbiota. It has also been shown that identical twins still had significant differences in their gut microbiota although they shared much higher similarity for gut microbiota structures than genetically unrelated married couples. The unique combination of gut bacteria in each animal may thus have an important role in their host's metabolism because they are adding new dimensions to functional diversity at the whole-organism level on host genetics, which includes participating the development of pathophysiology and providing complimentary metabolic pathways for drugs and diets. In light of the recent findings on the relationships between gut bacterial composition and the obese host phenotype, understanding gut bacterial dynamics in relation to host physiology and pathology has become an important part of future personalized health care solutions.

Infection Control in the Multidrug-Resistant Era: Tending the Human Microbiome

Infection Control in the Multidrug-Resistant Era: Tending the Human Microbiome


Increasing understanding of the normal commensal microorganisms in humans suggests that restoring and maintaining the microbiome may provide a key to preventing colonization and infection with multidrug-resistant organisms (MDROs). Intact communities of commensals can prevent colonization with MDROs through both competition for space and resources and the complex immunologic and biochemical interactions that have developed between commensal and host over millennia. Current antimicrobials, however, exert tremendous collateral damage to the human microbiome through overuse and broadening spectrum, which has likely been the driving force behind the introduction and proliferation of MDROs. The future direction of infection control and anti-infective therapy will likely capitalize on an expanding understanding of the protective role of the microbiome by (1) developing and using more microbiome-sparing antimicrobial therapy, (2) developing techniques to maintain and restore indigenous microbiota, and (3) discovering and exploiting host protective mechanisms normally afforded by an intact microbiome.

The gut's 'friendly' viruses revealed

The gut's 'friendly' viruses revealed


More than 10 trillion bacteria normally inhabit the gastrointestinal tract, where they synthesize essential amino acids and vitamins, produce anti-inflammatory factors and help break down starches, sugars and proteins that people could not otherwise digest. Within and among these bacteria live bacterial viruses, or bacteriophages, which affect bacterial numbers and behaviour as they either prey on bacteria or co-exist with them, shuttling genes from one bacterium to another.

Ecological and evolutionary forces shaping microbial diversity in the human intestine

Ecological and evolutionary forces shaping microbial diversity in the human intestine


Our intestinal tract is a nutrient-rich environment packed with up to 100 trillion (1014) microbes. The vast majority reside in our colon where densities approach 1011–1012 cells/ml, the highest recorded for any microbial habitat. Today, there are 6.5 billion humans living on Earth. Together, we represent a gut reservoir of 1023–1024 microbial cells. This number is just five orders of magnitude less than the world's oceans, which contain an estimated 1029 cells. Therefore, together with other mammals, the human gut constitutes a substantial microbial habitat in our biosphere.

功能元基因组学与中药研究国际研讨会

功能元基因组学与中药研究国际研讨会


   Functional Metagenomics for Understanding TCM”

人体内共生的微生物多达1000多种,它们的基因总和被称为“人类元基因组”,肠道元基因组对人体的免疫和代谢起着重要作用,它的失衡与很多代谢性疾病,如糖尿病、肥胖、癌症的发生有密切关系。

  中国传统医学中的许多药物和疗法很可能是通过改变肠道元基因组和肠道代谢达到治疗作用的。如果我们积极发挥自身优势,把中药里一些能干预肠道菌群、防治慢性病的优秀遗产,采用元基因组学、代谢组学等研究方法进行研究,去粗取精,就可以让国际社会理解和认可这些药物和疗法,并在人类元基因组研究的国际竞争中占据制高点,为中药现代化和国际医学发展做出重要贡献。

  为了促进人类功能元基因组和中医药研究的相互交叉和相互促进,上海交通大学生命科学技术学院、伦敦帝国理工学院和上海系统生物医学研究中心共同组办题为“Functional Metagenomics for Understanding TCM”的国际研讨会。



不適當不合理的過度的抗生素使用,將殺害對我們人體有益的細菌。抗生素使用考慮的除了聚焦在細菌抗藥性之外,更重要的是,不適當不合理的過度的抗生素使用,將永遠改變保護我們的菌落,一定會造成更嚴重的後果。所以我們一定要停止殺害對我們人體有益的細菌。

不適當不合理的過度的抗生素使用,將殺害對我們人體有益的細菌。抗生素使用考慮的除了聚焦在細菌抗藥性之外,更重要的是,不適當不合理的過度的抗生素使用,將永遠改變保護我們的菌落,一定會造成更嚴重的後果。所以我們一定要停止殺害對我們人體有益的細菌。

停止殺害對我們人體有益的細菌

停止殺害對我們人體有益的細菌


不適當不合理的過度的抗生素使用,將殺害對我們人體有益的細菌。抗生素使用考慮的除了聚焦在細菌抗藥性之外,更重要的是,不適當不合理的過度的抗生素使用,將永遠改變保護我們的菌落,一定會造成更嚴重的後果。所以我們一定要停止殺害對我們人體有益的細菌。

人類腸道中的微生物體,提供了豐碩的有關健康和疾病的信息。它們訴說了人體內在的運轉運作的故事。

人類腸道中的微生物體,提供了豐碩的有關健康和疾病的信息。它們訴說了人體內在的運轉運作的故事。

人類腸道微生物體,具有消化、生物降解、生物聚合、生物轉化、解毒作用、防衛功能、促進生長成長發展發育成熟分化的功能、維持生物生物多樣性的功能。人類腸道微生物體,是人類宿主體內常常被忽累了的、被遺忘的、看不見的絕對的大多數。

人類腸道微生物體,具有消化、生物降解、生物聚合、生物轉化、解毒作用、防衛功能、促進生長成長發展發育成熟分化的功能、維持生物生物多樣性的功能。人類腸道微生物體,是人類宿主體內常常被忽累了的、被遺忘的、看不見的絕對的大多數。


人類腸道微生物體,在人類宿主體內腸胃道動態的平衡恆定、能量動態的平衡恆定、新陳代謝動態的平衡恆定、免疫系統動態的平衡恆定、神經內分泌系統動態的平衡恆定、神經精神免疫系統動態的平衡恆定、整體人體超級生物體動態的平衡恆定,扮演關鍵性的重要的調控控制的主導角色。

人類腸道微生物體,在人類個人個體、族群群體、種族國族的生存存活發展繁榮昌盛、甚至於在人類演化樹遺傳學上扮演關鍵性的重要的調控控制的主導角色。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體,和人類宿主共同演化、共同存在、共同基因表現、共同新陳代謝、共同發展、共同適應。人類腸道微生物體,和人類宿主共同演化進化成為一個互利共生的、共存共榮的人類超級生物體。

這個人類超級生物體,包括了兩套基因體,一個完整的人類基因體和數目巨大的微生物基因體。這兩套基因體一定要統合整合成,一個人類超級生物體的全基因體,這兩套基因體一定要統合整合,溝通協調合作、和諧地共同運轉運作,才能維持這個人類超級生物體的健康,和這個人類超級生物體的動態的平衡恆定。

人類腸道被一個複雜的微生物生態體系所移生寄宿,它們的集合被稱為人類腸道微生物體,它們也被認為是人類宿主體內一個後天獲得的各別的器官,它的編碼能量超過人類肝臟能量的一百倍。

這個廣泛的微生物基因體參與了食物、藥物和其他有毒性的化合物的,初次通過的新陳代謝和生物可利用性的生物轉化作用的運轉。

人類腸胃道中的微生物信息,是人類腸胃道黏膜正常發展和動態的平衡恆定的關鍵。人類腸胃道中的微生物體,是人類能量和新陳代謝動態的平衡恆定的關鍵標的。人類腸胃道中的微生物體,被認為是人類宿主體內,一個後天獲得的微生物的新陳代謝的器官。它的新陳代謝的能量,超過人類肝臟新陳代謝的能量一百倍。

人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵器官。人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵的調控者。



人類超級生物體和人類微生物體

人類超級生物體和人類微生物體


人類微生物體和人類宿主建構成一個整體的互利共生、共存共榮的人類超級生物體。

人類宿主和他們的腸胃道的微生物體,一起生活在一種動態的平衡恆定狀態的互利共生的情境。

人類宿主提供微生物體營養素和穩定的環境,以供其生存存活、生長成長和發展。人類腸胃道的微生物體,也幫忙形塑人類腸胃道的黏膜的結構和功能的正常完整,同時驅動和形塑人類腸胃道的黏膜免疫系統的成熟發展和運轉,人類腸胃道的微生物體,也對人類宿主提供營養的貢獻回饋。

人類腸胃道的微生物體,調節人類腸胃道的黏膜,在營養素的吸收和新陳代謝方面,所需要的基因的表現,它們也調控人類腸胃道黏膜的屏障功能的完整,它們也參與和影響人類腸胃道的神經系統和人類腸胃道的蠕動,它們也參與和影響異種有毒物質的新陳代謝和生物轉化,對血管新生和細胞骨架和細胞基質、細胞信息的傳輸等,以及一般的細胞功能等造成影響,從這些局部性的效用,造成系統性的結果,透過這些人類腸胃道的微生物體,對人類宿主提供的利益,我們人類透過人類微生物體的作用而生活得更加美好。

因此維持一個健康的平衡的穩定的人類微生物體,是確保人類健康,和維持和諧的動態的平衡恆定狀態的必要的重要關鍵。

人類腸胃道的微生物體,幫助人類宿主處理營養素和藥物的新陳代謝和生物轉化的能量,調控調節人類宿主,各種不同的器官系統的多種的徑路的活動和運轉運作。

這個廣泛的微生物基因體參與了食物、藥物和其他有毒性的化合物的,初次通過的新陳代謝和生物可利用性的生物轉化作用的運轉。

這個廣泛的微生物基因體參與了食物、藥物和其他有毒性的化合物的,初次通過的新陳代謝和生物可利用性的生物轉化作用的運轉。


人類腸胃道中的微生物信息,是人類腸胃道黏膜正常發展和動態的平衡恆定的關鍵。人類腸胃道中的微生物體,是人類能量和新陳代謝動態的平衡恆定的關鍵標的。人類腸胃道中的微生物體,被認為是人類宿主體內,一個後天獲得的微生物的新陳代謝的器官。它的新陳代謝的能量,超過人類肝臟新陳代謝的能量一百倍。

人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵器官。人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵的調控者。



這個人類超級生物體,包括了兩套基因體,一個完整的人類基因體和數目巨大的微生物基因體。這兩套基因體一定要統合整合成,一個人類超級生物體的全基因體,這兩套基因體一定要統合整合,溝通協調合作、和諧地共同運轉運作,才能維持這個人類超級生物體的健康,和這個人類超級生物體的動態的平衡恆定。

這個人類超級生物體,包括了兩套基因體,一個完整的人類基因體和數目巨大的微生物基因體。這兩套基因體一定要統合整合成,一個人類超級生物體的全基因體,這兩套基因體一定要統合整合,溝通協調合作、和諧地共同運轉運作,才能維持這個人類超級生物體的健康,和這個人類超級生物體的動態的平衡恆定。


人類腸道被一個複雜的微生物生態體系所移生寄宿,它們的集合被稱為人類腸道微生物體,它們也被認為是人類宿主體內一個後天獲得的各別的器官,它的編碼能量超過人類肝臟能量的一百倍。

這個廣泛的微生物基因體參與了食物、藥物和其他有毒性的化合物的,初次通過的新陳代謝和生物可利用性的生物轉化作用的運轉。

人類腸胃道中的微生物信息,是人類腸胃道黏膜正常發展和動態的平衡恆定的關鍵。人類腸胃道中的微生物體,是人類能量和新陳代謝動態的平衡恆定的關鍵標的。人類腸胃道中的微生物體,被認為是人類宿主體內,一個後天獲得的微生物的新陳代謝的器官。它的新陳代謝的能量,超過人類肝臟新陳代謝的能量一百倍。

人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵器官。人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵的調控者。



人類腸道的微生物體能夠控制器官的功能。

人類腸道的微生物體能夠控制器官的功能。

人類腸道微生物體,是一個最緻密的、最複雜的、最生物多樣性的、動態的生態體系。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體,是一個最緻密的、最複雜的、最生物多樣性的、動態的生態體系。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。


人類腸道微生物體的組成成員、功能性質、差異性質、生物多樣性,受到環境因素、表觀遺傳學、懷孕期間、分娩方式、喂乳方式、食物攝取、人類宿主遺傳因素、出生前後胎兒新生兒和母親所處的環境衛生條件因素所影響所調控。

人類腸道微生物體的組成成員、功能性質、差異性質、生物多樣性,受到分娩方式、食物、藥物、疾病等因素的影響和調控。

人類腸道微生物體,具有消化、生物降解、生物聚合、生物轉化、解毒作用、防衛功能、促進生長成長發展發育成熟分化的功能、維持生物生物多樣性的功能。人類腸道微生物體,是人類宿主體內常常被忽累了的、被遺忘的、看不見的絕對的大多數。

人類腸道微生物體,在人類宿主體內腸胃道動態的平衡恆定、能量動態的平衡恆定、新陳代謝動態的平衡恆定、免疫系統動態的平衡恆定、神經內分泌系統動態的平衡恆定、神經精神免疫系統動態的平衡恆定、整體人體超級生物體動態的平衡恆定,扮演關鍵性的重要的調控控制的主導角色。

人類腸道微生物體,在人類個人個體、族群群體、種族國族的生存存活發展繁榮昌盛、甚至於在人類演化樹遺傳學上扮演關鍵性的重要的調控控制的主導角色。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體,和人類宿主共同演化、共同存在、共同基因表現、共同新陳代謝、共同發展、共同適應。人類腸道微生物體,和人類宿主共同演化進化成為一個互利共生的、共存共榮的人類超級生物體。

這個人類超級生物體,包括了兩套基因體,一個完整的人類基因體和數目巨大的微生物基因體。這兩套基因體一定要統合整合成,一個人類超級生物體的全基因體,這兩套基因體一定要統合整合,溝通協調合作、和諧地共同運轉運作,才能維持這個人類超級生物體的健康,和這個人類超級生物體的動態的平衡恆定。

人類腸道被一個複雜的微生物生態體系所移生寄宿,它們的集合被稱為人類腸道微生物體,它們也被認為是人類宿主體內一個後天獲得的各別的器官,它的編碼能量超過人類肝臟能量的一百倍。

這個廣泛的微生物基因體參與了食物、藥物和其他有毒性的化合物的,初次通過的新陳代謝和生物可利用性的生物轉化作用的運轉。

人類腸胃道中的微生物信息,是人類腸胃道黏膜正常發展和動態的平衡恆定的關鍵。人類腸胃道中的微生物體,是人類能量和新陳代謝動態的平衡恆定的關鍵標的。人類腸胃道中的微生物體,被認為是人類宿主體內,一個後天獲得的微生物的新陳代謝的器官。它的新陳代謝的能量,超過人類肝臟新陳代謝的能量一百倍。

人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵器官。人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵的調控者。



人類腸道微生物體,包含了大約一百兆個微生物,它的數目是人類身體所有細胞數目的十倍,這個人類腸道微生物基因體的基因數目,是整個人類基因體的基因數目的一百至一百五十倍。

人類腸道微生物體,包含了大約一百兆個微生物,它的數目是人類身體所有細胞數目的十倍,這個人類腸道微生物基因體的基因數目,是整個人類基因體的基因數目的一百至一百五十倍。


人類腸道微生物體,是一個最緻密的、最複雜的、最生物多樣性的、動態的生態體系。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體的組成成員、功能性質、差異性質、生物多樣性,受到環境因素、表觀遺傳學、懷孕期間、分娩方式、喂乳方式、食物攝取、人類宿主遺傳因素、出生前後胎兒新生兒和母親所處的環境衛生條件因素所影響所調控。

人類腸道微生物體的組成成員、功能性質、差異性質、生物多樣性,受到分娩方式、食物、藥物、疾病等因素的影響和調控。

人類腸道微生物體,具有消化、生物降解、生物聚合、生物轉化、解毒作用、防衛功能、促進生長成長發展發育成熟分化的功能、維持生物生物多樣性的功能。人類腸道微生物體,是人類宿主體內常常被忽累了的、被遺忘的、看不見的絕對的大多數。

人類腸道微生物體,在人類宿主體內腸胃道動態的平衡恆定、能量動態的平衡恆定、新陳代謝動態的平衡恆定、免疫系統動態的平衡恆定、神經內分泌系統動態的平衡恆定、神經精神免疫系統動態的平衡恆定、整體人體超級生物體動態的平衡恆定,扮演關鍵性的重要的調控控制的主導角色。

人類腸道微生物體,在人類個人個體、族群群體、種族國族的生存存活發展繁榮昌盛、甚至於在人類演化樹遺傳學上扮演關鍵性的重要的調控控制的主導角色。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體,和人類宿主共同演化、共同存在、共同基因表現、共同新陳代謝、共同發展、共同適應。人類腸道微生物體,和人類宿主共同演化進化成為一個互利共生的、共存共榮的人類超級生物體。

這個人類超級生物體,包括了兩套基因體,一個完整的人類基因體和數目巨大的微生物基因體。這兩套基因體一定要統合整合成,一個人類超級生物體的全基因體,這兩套基因體一定要統合整合,溝通協調合作、和諧地共同運轉運作,才能維持這個人類超級生物體的健康,和這個人類超級生物體的動態的平衡恆定。

人類腸道被一個複雜的微生物生態體系所移生寄宿,它們的集合被稱為人類腸道微生物體,它們也被認為是人類宿主體內一個後天獲得的各別的器官,它的編碼能量超過人類肝臟能量的一百倍。

這個廣泛的微生物基因體參與了食物、藥物和其他有毒性的化合物的,初次通過的新陳代謝和生物可利用性的生物轉化作用的運轉。

人類腸胃道中的微生物信息,是人類腸胃道黏膜正常發展和動態的平衡恆定的關鍵。人類腸胃道中的微生物體,是人類能量和新陳代謝動態的平衡恆定的關鍵標的。人類腸胃道中的微生物體,被認為是人類宿主體內,一個後天獲得的微生物的新陳代謝的器官。它的新陳代謝的能量,超過人類肝臟新陳代謝的能量一百倍。

人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵器官。人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵的調控者。



人類腸道微生物體和人類超級生物體

人類腸道微生物體和人類超級生物體


人類腸道微生物體,包含了大約一百兆個微生物,它的數目是人類身體所有細胞數目的十倍,這個人類腸道微生物基因體的基因數目,是整個人類基因體的基因數目的一百至一百五十倍。

人類腸道微生物體,是一個最緻密的、最複雜的、最生物多樣性的、動態的生態體系。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體的組成成員、功能性質、差異性質、生物多樣性,受到環境因素、表觀遺傳學、懷孕期間、分娩方式、喂乳方式、食物攝取、人類宿主遺傳因素、出生前後胎兒新生兒和母親所處的環境衛生條件因素所影響所調控。

人類腸道微生物體的組成成員、功能性質、差異性質、生物多樣性,受到分娩方式、食物、藥物、疾病等因素的影響和調控。

人類腸道微生物體,具有消化、生物降解、生物聚合、生物轉化、解毒作用、防衛功能、促進生長成長發展發育成熟分化的功能、維持生物生物多樣性的功能。人類腸道微生物體,是人類宿主體內常常被忽累了的、被遺忘的、看不見的絕對的大多數。

人類腸道微生物體,在人類宿主體內腸胃道動態的平衡恆定、能量動態的平衡恆定、新陳代謝動態的平衡恆定、免疫系統動態的平衡恆定、神經內分泌系統動態的平衡恆定、神經精神免疫系統動態的平衡恆定、整體人體超級生物體動態的平衡恆定,扮演關鍵性的重要的調控控制的主導角色。

人類腸道微生物體,在人類個人個體、族群群體、種族國族的生存存活發展繁榮昌盛、甚至於在人類演化樹遺傳學上扮演關鍵性的重要的調控控制的主導角色。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體,和人類宿主共同演化、共同存在、共同基因表現、共同新陳代謝、共同發展、共同適應。人類腸道微生物體,和人類宿主共同演化進化成為一個互利共生的、共存共榮的人類超級生物體。

這個人類超級生物體,包括了兩套基因體,一個完整的人類基因體和數目巨大的微生物基因體。這兩套基因體一定要統合整合成,一個人類超級生物體的全基因體,這兩套基因體一定要統合整合,溝通協調合作、和諧地共同運轉運作,才能維持這個人類超級生物體的健康,和這個人類超級生物體的動態的平衡恆定。

人類腸道被一個複雜的微生物生態體系所移生寄宿,它們的集合被稱為人類腸道微生物體,它們也被認為是人類宿主體內一個後天獲得的各別的器官,它的編碼能量超過人類肝臟能量的一百倍。

這個廣泛的微生物基因體參與了食物、藥物和其他有毒性的化合物的,初次通過的新陳代謝和生物可利用性的生物轉化作用的運轉。

人類腸胃道中的微生物信息,是人類腸胃道黏膜正常發展和動態的平衡恆定的關鍵。人類腸胃道中的微生物體,是人類能量和新陳代謝動態的平衡恆定的關鍵標的。人類腸胃道中的微生物體,被認為是人類宿主體內,一個後天獲得的微生物的新陳代謝的器官。它的新陳代謝的能量,超過人類肝臟新陳代謝的能量一百倍。

人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵器官。人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵的調控者。



人類腸道微生物體和人類超級生物體

人類腸道微生物體和人類超級生物體


人類腸道微生物體,包含了大約一百兆個微生物,它的數目是人類身體所有細胞數目的十倍,這個人類腸道微生物基因體的基因數目,是整個人類基因體的基因數目的一百至一百五十倍。

人類腸道微生物體,是一個最緻密的、最複雜的、最生物多樣性的、動態的生態體系。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體的組成成員、功能性質、差異性質、生物多樣性,受到環境因素、表觀遺傳學、懷孕期間、分娩方式、喂乳方式、食物攝取、人類宿主遺傳因素、出生前後胎兒新生兒和母親所處的環境衛生條件因素所影響所調控。

人類腸道微生物體的組成成員、功能性質、差異性質、生物多樣性,受到分娩方式、食物、藥物、疾病等因素的影響和調控。

人類腸道微生物體,具有消化、生物降解、生物聚合、生物轉化、解毒作用、防衛功能、促進生長成長發展發育成熟分化的功能、維持生物生物多樣性的功能。人類腸道微生物體,是人類宿主體內常常被忽累了的、被遺忘的、看不見的絕對的大多數。

人類腸道微生物體,在人類宿主體內腸胃道動態的平衡恆定、能量動態的平衡恆定、新陳代謝動態的平衡恆定、免疫系統動態的平衡恆定、神經內分泌系統動態的平衡恆定、神經精神免疫系統動態的平衡恆定、整體人體超級生物體動態的平衡恆定,扮演關鍵性的重要的調控控制的主導角色。

人類腸道微生物體,在人類個人個體、族群群體、種族國族的生存存活發展繁榮昌盛、甚至於在人類演化樹遺傳學上扮演關鍵性的重要的調控控制的主導角色。生態的和演化的力量形塑人類腸道微生物體的生物多樣性。

人類腸道微生物體,和人類宿主共同演化、共同存在、共同基因表現、共同新陳代謝、共同發展、共同適應。人類腸道微生物體,和人類宿主共同演化進化成為一個互利共生的、共存共榮的人類超級生物體。

這個人類超級生物體,包括了兩套基因體,一個完整的人類基因體和數目巨大的微生物基因體。這兩套基因體一定要統合整合成,一個人類超級生物體的全基因體,這兩套基因體一定要統合整合,溝通協調合作、和諧地共同運轉運作,才能維持這個人類超級生物體的健康,和這個人類超級生物體的動態的平衡恆定。

人類腸道被一個複雜的微生物生態體系所移生寄宿,它們的集合被稱為人類腸道微生物體,它們也被認為是人類宿主體內一個後天獲得的各別的器官,它的編碼能量超過人類肝臟能量的一百倍。

這個廣泛的微生物基因體參與了食物、藥物和其他有毒性的化合物的,初次通過的新陳代謝和生物可利用性的生物轉化作用的運轉。

人類腸胃道中的微生物信息,是人類腸胃道黏膜正常發展和動態的平衡恆定的關鍵。人類腸胃道中的微生物體,是人類能量和新陳代謝動態的平衡恆定的關鍵標的。人類腸胃道中的微生物體,被認為是人類宿主體內,一個後天獲得的微生物的新陳代謝的器官。它的新陳代謝的能量,超過人類肝臟新陳代謝的能量一百倍。

人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵器官。人類腸胃道中的微生物體,被認為是人類宿主體內,參與宿主能量代謝動態的平衡恆定的關鍵的調控者。

人類生態系統是非常重要的,它決定甚麼是我們能做的和甚麼是我們能吃的。

人類生態系統是非常重要的,它決定甚麼是我們能做的和甚麼是我們能吃的。
人類腸道中的微生物體,提供了豐碩的有關健康和疾病的信息。它們訴說了人體內在的運轉運作的故事。